88 research outputs found

    Widening Viewing Angles of Automultiscopic Displays using Refractive Inserts

    Get PDF

    Toward multi-target self-organizing pursuit in a partially observable Markov game

    Full text link
    The multiple-target self-organizing pursuit (SOP) problem has wide applications and has been considered a challenging self-organization game for distributed systems, in which intelligent agents cooperatively pursue multiple dynamic targets with partial observations. This work proposes a framework for decentralized multi-agent systems to improve intelligent agents' search and pursuit capabilities. We model a self-organizing system as a partially observable Markov game (POMG) with the features of decentralization, partial observation, and noncommunication. The proposed distributed algorithm: fuzzy self-organizing cooperative coevolution (FSC2) is then leveraged to resolve the three challenges in multi-target SOP: distributed self-organizing search (SOS), distributed task allocation, and distributed single-target pursuit. FSC2 includes a coordinated multi-agent deep reinforcement learning method that enables homogeneous agents to learn natural SOS patterns. Additionally, we propose a fuzzy-based distributed task allocation method, which locally decomposes multi-target SOP into several single-target pursuit problems. The cooperative coevolution principle is employed to coordinate distributed pursuers for each single-target pursuit problem. Therefore, the uncertainties of inherent partial observation and distributed decision-making in the POMG can be alleviated. The experimental results demonstrate that distributed noncommunicating multi-agent coordination with partial observations in all three subtasks are effective, and 2048 FSC2 agents can perform efficient multi-target SOP with almost 100% capture rates

    Unveiling microstructural damage for leakage current degradation in SiC Schottky diode after heavy ions irradiation under 200 V

    Full text link
    Single-event burnout and single-event leakage current (SELC) in SiC power devices induced by heavy ions severely limit their space application, and the underlying mechanism is still unclear. One fundamental problem is lack of high-resolution characterization of radiation damage in the irradiated SiC power devices, which is a crucial indicator of the related mechanism. In this letter, high-resolution transmission electron microscopy (TEM) was used to characterize the radiation damage in the 1437.6 MeV 181Ta-irradiated SiC junction barrier Schottky diode under 200 V. The amorphous radiation damage with about 52 nm in diameter and 121 nm in length at the Schottky metal (Ti)-semiconductor (SiC) interface was observed. More importantly, in the damage site the atomic mixing of Ti, Si, and C was identified by electron energy loss spectroscopy and high-angle annular dark-field scanning TEM. It indicates that the melting of the Ti-SiC interface induced by localized Joule heating is responsible for the amorphization and the formation of titanium silicide, titanium carbide, or ternary phases. These modifications at nanoscale in turn cause the localized degradation of the Schottky contact into Ohmic contact, resulting in the permanent increase in leakage current. This experimental study provides some valuable clues to thorough understanding of the SELC mechanism in SiC diode.Comment: 4 pages,4 figure
    corecore